Waring's number mod m

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fibonacci Sequence Mod m

We know that ( ) mod n F p forms a periodic sequence (vide Theorem 4). Let ( ) h p denote the length of the sequence. Let p be a prime such that: { } ( ) 2,3 mod 5 p ≡ a sufficient and necessary condition to ensure that ( ) 2 2 h p p + . We shall denote this group 1 G F . Let { } 1, 2 , , k D d d d = be the non-empty set of k divisors of 2 2 p + . Then for ( ) [ ] 1 min G i F h p d = such that ...

متن کامل

Lower Bounds for (MOD p - MOD m) Circuits

Modular gates are known to be immune for the random restriction techniques of Ajtai Ajt83], Furst, Saxe, Sipser FSS84], Yao Yao85] and H astad H as86]. We demonstrate here a random clustering technique which overcomes this diiculty and is capable to prove generalizations of several known modular circuit lower bounds of Barrington, Straubing, Th erien BST90], Krause and Pudll ak KP94], and other...

متن کامل

Separating the Communication Complexities of MOD m and MOD p Circuits

We prove in this paper that it is much harder to evaluate depth–2, size–N circuits with MOD m gates than with MOD p gates by k–party communication protocols: we show a k–party protocol which communicates O(1) bits to evaluate circuits with MOD p gates, while evaluating circuits with MOD m gates needs Ω(N) bits, where p denotes a prime, and m a composite, non-prime power number. As a corollary, ...

متن کامل

The ( mod , integral and exclusive ) sum number of graph

In this paper, we developed some new formulae for exclusive sum number of the complete bipartite graph , n m K . Also we show that for     , 2 2 , 6 n n K E n K n    2 4, 2 6, 3 n n n          and 2 4 n   .

متن کامل

Mod-poisson Convergence in Probability and Number Theory

Building on earlier work introducing the notion of “modGaussian” convergence of sequences of random variables, which arises naturally in Random Matrix Theory and number theory, we discuss the analogue notion of “mod-Poisson” convergence. We show in particular how it occurs naturally in analytic number theory in the classical Erdős-Kac Theorem. In fact, this case reveals deep connections and ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2008

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2008.03.006